- Home
- Standard 12
- Mathematics
Express the following matrices as the sum of a symmetric and a skew symmetric matrix : $\left[\begin{array}{cc}3 & 5 \\ 1 & -1\end{array}\right]$
Solution
Let $A=\left[\begin{array}{cc}3 & 5 \\ 1 & -1\end{array}\right],$ then $A^{\prime}=\left[\begin{array}{cc}3 & 1 \\ 5 & -1\end{array}\right]$
Now, $A+A^{\prime}=\left[\begin{array}{cc}3 & 5 \\ 1 & -1\end{array}\right]+\left[\begin{array}{cc}3 & 1 \\ 5 & -1\end{array}\right]=\left[\begin{array}{cc}6 & 6 \\ 6 & -2\end{array}\right]$
Let $P=\frac{1}{2}\left(A+A^{\prime}\right)=\frac{1}{2}\left[\begin{array}{cc}6 & 6 \\ 6 & -2\end{array}\right]=\left[\begin{array}{cc}3 & 3 \\ 3 & -1\end{array}\right]$
Now, $P^{\prime}=\left[\begin{array}{cc}3 & 3 \\ 3 & -1\end{array}\right]=P$
Thus, $P=\frac{1}{2}(A+A)$ is a symmetric matrix.
Now, $A-A^{\prime}=\left[\begin{array}{cc}3 & 5 \\ 1 & -1\end{array}\right]-\left[\begin{array}{cc}3 & 1 \\ 5 & -1\end{array}\right]=\left[\begin{array}{cc}0 & 4 \\ -4 & 0\end{array}\right]$
Let $Q=\frac{1}{2}\left(A-A^{\prime}\right)=\frac{1}{2}\left[\begin{array}{cc}0 & 4 \\ -4 & 0\end{array}\right]=\left[\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right]$
Now, $Q^{\prime}=\left[\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right]=-Q$
Thus, $Q=\frac{1}{2}\left(A-A^{\prime}\right)$ is a skew-symmetric matrix.
Representing $A$ as the sum of $P$ and $Q:$
$P+Q=\left[\begin{array}{cc}3 & 3 \\ 3 & -1\end{array}\right]$ $+\left[\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right]$ $=\left[\begin{array}{cc}3 & 5 \\ 1 & -1\end{array}\right]$ $=A$
Similar Questions
Match the Statements / Expressions in Column $I$ with the Statements / Expressions in Column $II$ and indicate your answer by darkening the appropriate bubbles in the $4 \times 4$ matrix given in the $ORS$.
Column $I$ | Column $II$ |
$(A)$ The minimum value of $\frac{x^2+2 x+4}{x+2}$ is | $(p)$ $0$ |
$(B)$ Let $A$ and $B$ be $3 \times 3$ matrices of real numbers, where $A$ is symmetric, $B$ is skewsymmetric, and $(A+B)(A-B)=(A-B)(A+B)$. If $(A B)^t=(-1)^k A B$, where $(A B)^t$ is the transpose of the matrix $A B$, then the possible values of $k$ are | $(q)$ $1$ |
$(C)$ Let $\mathrm{a}=\log _3 \log _3 2$. An integer $\mathrm{k}$ satisfying $1<2^{\left(-k+3^{-2}\right)}<2$, must be less than | $(r)$ $2$ |
$(D)$ If $\sin \theta=\cos \phi$, then the possible values of $\frac{1}{\pi}\left(\theta \pm \phi-\frac{\pi}{2}\right)$ are | $(s)$ $3$ |